Name			
MATH 352	Complex Analysis	Spring 2003	Exam $#4$
Instructions: Do your own work. You may consult class notes, the course text, or other books.			
Give a reference if you use some source other than class notes or the course text. Turn in a			
complete and concise write up of your work. Show enough detail so that a peer could follow			
your work (both computations and reasoning). If you are not confident in some result, you will			
receive more credit if you make a note of this and comment on where you might be going wrong			

or on alternate approaches you might try. The exam is due Wednesday, May 7 at 4:00 pm.

- 1. Consider a function $f(z) = \frac{p(z)}{q(z)}$ where p and q are analytic at $z_0, p(z_0) \neq 0$, and q has a zero of order 2 at z_0 .
 - (a) Show that f has a pole of order 2 at z_0 and find an expression for the residue of f at z_0 in terms of p, q, and derivatives of these functions.
 - (b) Use your result to compute the residue of $f(z) = \frac{1}{\sin^2 z}$ at $z_0 = 0$.
- 2. Consider the contour integral $\oint_C \frac{z^4}{(z+1)(z-2)(z-2i)} dz$ where C is the circle of radius 3 centered at the origin.
 - (a) Evaluate this using the usual residue theorem.
 - (b) Evaluate this using Theorem 2 on page 185 of the text.
- 3. Problem #13 on page 216 of the text.
- 4. Find the value of the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ by analyzing $\oint_{C_N} \frac{1}{z^2 \tan z} dz$ where C_N is the square contour with edges on the lines $x = \pm \left(N + \frac{1}{2}\right)\pi$ and $y = \pm \left(N + \frac{1}{2}\right)\pi$.
- 5. Show how to deduce the Cauchy-Goursat theorem and Cauchy's integral formulas starting from the residue theorem.